Deliver Your News to the World

Astrocytes build synapses after cocaine use in mice

Researchers in Biological Psychiatry identify a potential therapeutic target for addiction


Philadelphia – WEBWIRE

Drugs of abuse, like cocaine, are so addictive due in part to their cellular interaction, creating strong cellular memories in the brain that promote compulsive behaviors. Researchers have tried to understand the formation of these memories in hopes of finding ways to disrupt them as a potential treatment for substance use disorder (SUD). A new study shows that cocaine use in mice leads  to the formation of synapses by an unexpected architect: a type of cell called astrocytes.

The study appears in Biological Psychiatry, published by Elsevier.

Glia, a diverse class of brain support cells that includes astrocytes, were once thought of as the “glue” that holds neurons together, without a significant role in cognition or memory. In this study, Yan Dong, professor of Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA, and the study’s senior author, said: “We demonstrate that astrocytes respond to cocaine experience by promoting the formation of new synapses.” Synapses are the physical connection points between neurons and are thought to be the cellular substrate for embedding memory traces.

Like many cellular associations in the brain, these drug-induced synaptic connections are not conscious memories but rather a re-patterning of the brain that, in this case, contributes to addiction. “Memories associated with drugs of abuse can be extremely durable and often trigger drug relapse even after long abstinence,” said Dr. Dong.

John Krystal, MD, Editor of Biological Psychiatry, said of the study, "We often think of the response to cocaine as purely neural. Yet, here we see that supporting cells called astrocytes play a critical role in a lasting effect of repeated cocaine exposure"

To investigate the synapse formation, the researchers bred transgenic mice in which they could visualize calcium signals, which astrocytes use to communicate with other cells. They focused on the nucleus accumbens, a region deep in the brain associated with reward, learning and addiction. The data showed that astrocyte signaling was required for the cocaine-induced synapse formation.

The team next performed behavioral experiments in which rats self-administered cocaine, an animal model of addiction. When the researchers blocked formation of the synapses, the rats did not seek cocaine after drug withdrawal in the same way that control rats did.

“Thus, these new synapses may constitute a unique set of neuronal substrates involved in cocaine-associated memories,” said Dr. Dong. “Our results provide an unexpected yet concrete target: glial-mediated synaptogenic signaling,” he added, suggesting that the new synapses might be manipulated for potential therapeutic benefit for substance use disorder.

---

Notes 
The article is "Cocaine Triggers Astrocyte-Mediated Synaptogenesis" by Junshi Wang, King-Lun Li, Avani Shukla, Ania Beroun, Masago Ishikawa, Xiaojie Huang, Yao Wang, Yao Q. Wang, Yang Yue, Noah Bastola, Hugh Huang, Lily Kramer, Terry Chao, Yanhua Huang, Susan Sesack, Eric Nestler, Oliver Schlüter, Yan Dong (https://doi.org/10.1016/j.biopsych.2020.08.012). It appears as an Article In Press in Biological Psychiatry, published by Elsevier.

The authors’ affiliations and disclosures of financial and conflicts of interests are available in the article.

John H. Krystal, MD, is Chairman of the Department of Psychiatry at the Yale University School of Medicine, Chief of Psychiatry at Yale-New Haven Hospital, and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available here.

About Biological Psychiatry
Biological Psychiatry is the official journal of the Society of Biological Psychiatry, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal publishes both basic and clinical contributions from all disciplines and research areas relevant to the pathophysiology and treatment of major psychiatric disorders.

The journal publishes novel results of original research which represent an important new lead or significant impact on the field, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Reviews and commentaries that focus on topics of current research and interest are also encouraged.

Biological Psychiatry is one of the most selective and highly cited journals in the field of psychiatric neuroscience. It is ranked 7th out of 155 Psychiatry titles and 12th out of 271 Neurosciences titles in the Journal Citations Reports® published by Clarivate Analytics. The 2019 Impact Factor score for Biological Psychiatry is 12.095. www.sobp.org/journal

About Elsevier
Elsevier is a global information analytics business that helps scientists and clinicians to find new answers, reshape human knowledge, and tackle the most urgent human crises. For 140 years, we have partnered with the research world to curate and verify scientific knowledge. Today, we’re committed to bringing that rigor to a new generation of platforms. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support, and professional education; including ScienceDirectScopusSciValClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, 39,000 e-book titles and many iconic reference works, including Gray’s Anatomy. Elsevier is part of RELX, a global provider of information-based analytics and decision tools for professional and business customers. www.elsevier.com


( Press Release Image: https://photos.webwire.com/prmedia/6/265346/265346-1.jpg )


WebWireID265346





This news content was configured by WebWire editorial staff. Linking is permitted.

News Release Distribution and Press Release Distribution Services Provided by WebWire.